Abstract
In this work, the question of the influence of the counterion size on the self-assembly in melts of diblock copolymers with one charged block was studied using coarse-grained molecular dynamics simulations. It was assumed that the blocks were fully compatible, i.e., the Flory-Huggins parameter χ between them was equal to 0. Due to the presence of correlation attraction (electrostatic cohesion) between the charged species, the systems with all types of counterions underwent transitions to ordered states, forming various morphologies, including lamellae, perforated lamellae, and hexagonally packed cylinders. Phase diagrams were constructed by varying the chain composition fc and locating the order-disorder transition positions in terms of the electrostatic strength parameter λ (dimensionless Bjerrum length). Despite having a rather large ion size mismatch, the systems with smaller counterions demonstrated an even better tendency to form microphase separated states than the systems with larger ones. It was found that the differences between the phase diagrams of the systems with different counterions can be roughly rationalized by using coordinates (volume fraction of the charged block φc-modified interaction parameter λ*). The latter parameter assumes that the electrostatic energy is simply inversely proportional to the characteristic distance between the ions of different signs. Such an approach appeared to be rather effective and allowed the diagrams obtained for different counterion sizes to almost coincide. The results of this work suggest that the counterion size can be used as a tool to control the system morphology as well as the effective incompatibility between the blocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of chemical physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.