Abstract

The effect of the concentration ratio on the performance of parabolic trough and central receiver collectors with integrated transparent insulation materials (TIMs) is analyzed in this work. A model based on optical, energy, and exergy analyses is developed to determine thermal and second law efficiencies of concentrated solar collectors as a function of the absorber temperature and concentration ratio. The results are compared with the respective traditional collector configurations without TIM. In general, high concentration ratios are fundamental to maintain high efficiencies. The incorporation of a TIM into concentrated solar collectors leads to higher thermal efficiencies at high operating temperatures even at low concentration ratios. An equivalent second law efficiency to that of the reference collector configuration can be achieved at lower concentration ratios by incorporating a TIM in parabolic trough or a TIM and a glass envelope in central receiver collectors. The idea of using a TIM deserves further exploration as it seems to be a promising alternative that contributes to a more efficient and cost-effective technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.