Abstract

In this letter, the effect of silicon and nitrogen on the electrical properties of TaSi/sub x/N/sub y/ gate electrode were investigated. The TaSi/sub x/N/sub y/ films were deposited on SiO/sub 2/ using reactive cosputtering of Ta and Si target in Ar and N/sub 2/ ambient. The thermal stability of TaSi/sub x/N/sub y//SiO/sub 2//p-type Si stacks was evaluated by measuring the flatband voltage and equivalent oxide thickness at 400/spl deg/C and 900/spl deg/C in Ar. It was found that under high temperature anneals, Si-rich TaSi/sub x/N/sub y/ films increased and this was attributed to the formation of a reaction layer at the electrode-dielectric interface. Reducing the Si content alone did not prevent the formation of this reaction layer while removing Si completely by utilizing TaN resulted in work functions that were too high. The presence of both Si and N was deemed necessary and their content was critical in obtaining optimized TaSi/sub x/N/sub y/ gates that are suitable for NMOS devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call