Abstract

An investigation was carried out on synthetic ores containing high purity pyrite, pyrrhotite and chalcopyrite and on two gold ores currently processed to evaluate the impact of cyanicides on cyanidation and to improve the leaching performance by using a pre-leaching, injecting oxygen and adding lead nitrate. With regard to the synthetic ores, it was found that pyrrhotite did not generate a high cyanide consumption while pyrite and chalcopyrite were detrimental. Pre-leaching was deleterious for the ore containing chalcopyrite while pre-leaching with lead nitrate was very efficient to decrease the reactivity of the ore containing pyrite. The two gold ores studied had very different compositions. The low sulphide ore had a low sulphide content (1.36% S), present as pyrrhotite while the second had a very high sulphide content (20.2% S), in the form of pyrite, pyrrhotite and chalcopyrite. The efficiency of the process conditions was peculiar to the ores. The high sulphide ore required a stronger, longer pre-leaching period (12 h) with greater amounts of lime (7.0 kg/t) and lead nitrate (600 g/t) than the low-sulphide ore. The ore with a low sulphide content required a pre-leaching of only 1 h with a small quantity of Pb(NO 3) 2 (50 g/t) and leaching can be performed at 360 ppm NaCN to allow a recovery of 96.4% Au and a low cyanide consumption at 0.18 kg/t. As for the high sulphide ore, cyanidation had to be conducted at 560 ppm NaCN to recover 88.4% Au with a cyanide consumption of 0.80 kg/t. An increase in the amount of lime enhanced oxidation of soluble sulphides. Lead nitrate stabilized copper and iron dissolution by forming a passivation layer at the surface of sulphide minerals. Lead nitrate also prevented the formation of a passive layer at the surface of gold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call