Abstract

Effects were shown for the composition and post-synthesis heat treatment in an oxygen atmosphere on the electrochemical properties of nanocomposites derived from polypyrrole (PPy) and a V2O5 xerogel with host–guest structure. PPy0.05V2O5 was found to have the highest specific discharge capacity of about 290 mA·h/g and high stability upon prolonged charge-discharge cycling among the PPyxV2O5 nanocomposites prepared (where x = 0.1, 0.05, 0.025). Post-synthesis heat treatment in an oxygen atmosphere leads to oxidation of the reduced portion of the inorganic nanocomposite component and nanostructurization of the composite with formation of nanofibers that facilitate a considerable increase in the specific capacity and stability upon cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call