Abstract

AbstractThe particle size of CoFe2O4 powders (average particle size of 350 nm) was reduced to 50 nm by high‐energy milling. In this paper, special attention was given for analyzing the densification and grain growth of both particle sizes (350 and 50 nm) subject to ultrafast sintering assays using microwave sintering and their effect on the magnetic and electric properties. The results indicated that the grain growth was 10 times higher for the nanoparticle system, reaching similar sizes of ~1 μm in both cases after sintering. The relative density values were higher (95%) in the nanoparticle system due to the wide distribution of particle sizes generated in the grinding process. Qualitatively inferred microscopy analysis showed high sinterability of fine particles with a narrow distribution of grain size when subjected to ultrafast firing processes. Magnetization measurements at room temperature clearly show the reduction of Hc with increasing grain size. Electric resistivity, dielectric constant (ε′), and dielectric loss tangent (tan δ) were measured as a function of frequency at room temperature. The low values of dielectric constant (ε′) and dielectric loss (tan δ) in the low frequency range, shown for all samples sintered by microwave, prove the excellent uniformity in the microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.