Abstract

The effect of metal-free chromophores on dye-sensitized solar cell performance is investigated. Solid state dye-sensitized solar cells (ssDSCs) using different molecular sensitizers based on triphenylamine (TPA) with thiophene linkers and different alkyl chain in the donor unit have been characterized using impedance spectroscopy (IS). We show that different molecular structures play a fundamental role on solar cell performance, by the effect produced on TiO 2 conduction band position and in the recombination rate. Dye structure and its electronic properties are the main factors that control the recombination, the capacitance and the efficiency of the cells. A clear trend between the performance of the cell and the optimization level of the blocking effect of the dye structure has been identified in the solid state solar cells with Spiro-OMeTAD hole conductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.