Abstract

The results of investigation of the effect of chemical composition and structural and phase states of reactor steels and vanadium alloys on their capture and retention of hydrogen introduced into the materials in various ways are presented. It is shown that, in the case of identical conditions of hydrogen introduction, the amount of hydrogen captured by austenitic steels is substantially higher than that captured by ferritic/ martensitic steels. At the same time, the EP450 ODS ferritic/martensitic steel dispersion-strengthened with nanosized yttrium oxide particles retains a substantially higher amount of hydrogen as compared to that retained in the EP450 matrix steel. The alloying of vanadium with tungsten, zirconium, and titanium leads to an increase in the amount of retained hydrogen. The effect of titanium content on hydrogen retention is found to be nonmonotonic; the phenomenon is explained from a physical view point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.