Abstract
The species Eucalyptus globulus, Eucalyptus nitens and Pinus radiata, are important supplies for the production of cellulose pulp in the world market, which can be used for the production of cellulose nanofibrils (CNFs). Understanding how the characteristics of different raw materials affect the production and final properties of nanofibrillated celluloses is very useful, both for the pulp industry and for the end user. The aim of this research was to determine how the chemical and structural differences of the commercial Kraft pulps of E. globulus, E. nitens and P. radiata affect the production and the morphological and rheological characteristics of the CNFs produced through an enzymatic-mechanical process. On one hand, the results showed that pine fibers were easier to deconstruct than eucalyptus fibers, however, pine CNFs were found to have the largest fibril width and a lower aspect ratio (length /width). On the other hand, the pulp of E. globulus, was the one that obtained a better aspect ratio and higher intrinsic viscosity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.