Abstract

Structural stability of a double-nanowire system with surface effects subjected to axial compressive forces is analyzed. Taking into account the Casimir force between the two nanowires, two coupled governing equations for buckling of a double-nanowire system are derived. For four typical end supports including simply-supported, clamped, cantilevered, and clamped-pinned double-nanowire systems, the characteristic equations are derived and the critical loads are determined for the out-of-phase in-plane buckling. Numerical results indicate that positive surface elasticity enhances the load-carrying capacity of the nanowires, and the reverse is also true. The Casimir force and residual surface tension always increase the critical loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.