Abstract

The effect of the calcium-binding protein regucalcin on the Ca2+ transport system in the liver microsomes from fed rats was investigated. Ca2+ transport was assayed by the method of Millipore filtration to estimate microsomal 45Ca2+ accumulation following addition of 10 mM adenosine triphosphate (ATP). 45Ca2+ uptake was retarded by the presence of regucalcin (1.0-4.0 microM). This retardation was remarkable at 1 min after regucalcin addition, while appreciable retardation was no longer seen at 5 min. Regucalcin (2.0 microM)-induced retardation of 45Ca2+ uptake was prevented by the presence of calmodulin (5 micrograms/ml). Calmodulin alone (1 and 5 micrograms/ml) caused a significant increase in 45Ca2+ uptake at 3 min after the start of incubation. Also, regucalcin (2.0 microM)-induced retardation of 45Ca2+ uptake was completely blocked by the presence of a Ca2(+)-trapping agent, oxalate (3 mM). On the other hand, 45Ca2+, which accumulated in microsomes during 5 min after ATP addition, was markedly released by the addition of regucalcin. This release was dose-dependent (0.5-4.0 microM). Guanosine triphosphate (GTP; 10-100 microM) caused a significant release of 45Ca2+ from the microsomes. The presence of regucalcin (2.0 microM) further enhanced the GTP effect. Regucalcin (2.0 microM)-induced release of 45Ca2+ was not blocked by the presence of the protein thiol-protecting agent dithiothreitol (0.1 mM). The presence of oxalate (3 mM) completely blocked the effect of regucalcin on 45Ca2+ release from the microsomes. These results indicate that regucalcin stimulates Ca2+ release from liver microsomes, and that the protein retards the microsomal Ca2+ uptake. The present study suggests that regucalcin can regulate the Ca2+ transport system in rat liver microsomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.