Abstract

The effect of the blade loading distribution on head, radial force and pressure pulsation of a low specific-speed centrifugal pump with cylindrical impeller blades were investigated in the present study. Blade shapes were obtained by adopting the 1D inverse design method, impellers with different blade loading curves were obtained while the distribution of the blade loading was carefully tailored. Threedimensional URANS simulation method based on the Shear stress transport (SST) k-ω turbulence model was employed for the analyzation of flow patterns. Numerical results including the pressure distribution and velocity profile were validated by comparing with the available experimental data, and an acceptable agreement was obtained. Three typical parameters of the blade loading curve, including the location of the fore-loading point (mpre), location of the aft-loading point (mpost) and slope of the rectilinear segment (K), were analyzed. Results showed that the well-designed blade loading curve, such as the fore-loading impeller, can effectively reduce the pressure pulsation amplitude and the radial force. The significant effect of the variation of the aft-loading point on pump hydrodynamic performance was also investigated. Meanwhile, pressure and velocity distributions at different slopes of the blade loading curves show that the fore-loading impeller produces more uniform flow issuing from the impeller than that of the pump with aft-loading impeller, thus reduces the radial force and pressure pulsation of the pump.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.