Abstract
The Al–5% Cu alloy-based metal-matrix composite materials reinforced with 5-μm B4C particles have been produced using mechanical mixing-in method. A process of addition of the B4C particles into the melt has been developed. A homogeneous distribution of the B4C reinforcing particles in the metal-matrix composite matrix was obtained. Using X-ray diffraction analysis, the formation of Al3BC and AlB2 phases has been revealed at the interphase matrix/particle boundary, which indicates a good interaction in the phases. With increasing B4C content in the matrix alloy, an insignificant increase in the porosity (from 1 to 3.1%) occurs. The average linear thermal-expansion coefficient is reduced from 24.5 to 22.6 × 10–6 K–1 in the temperature range of 20–100°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.