Abstract

The main goal of this work was the increasing electrical conductivity of carbon-epoxy composites due to implementation of thermoplastic nonwoven veils doped with carbon nanotubes into the composite structure. Nonwovens which differ in areal weight were produced by extrusion of fibers and their thermal pressing. Laminates were fabricated using an out-of-autoclave method and nonwovens were incorporated between each layer of carbon-epoxy unidirectional prepreg. The applied conductive nonwovens improved surface and volume electrical conductivity of carbon fibre reinforced polymer in all directions. Microstructure observations proved a very high quality of the fabricated composites. The implementation of nonwovens affected the crack propagation under loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call