Abstract
In recent years, individual control of one’s personal environment has been drawing increasing attention due to the growing interest in health care. Wearable devices are especially useful because of their controllability regardless of location. Humidity is one of the inevitable factors in the personal environment as a preventive against infectious diseases. Although atomization devices are commonly used as a method of humidity control, at present, there are no wearable humidity control devices. Vibration of a lithium niobate (LN) device in the thickness mode is a promising piezoelectric method for miniaturization of atomization devices for humidity control. To miniaturize the atomization device, the transducer size needs to be small not so much as to decrease the atomization efficiency. However, the effect of the device area on the atomization efficiency of LN at a size suitable for mounting in wearable devices has not been studied. Here, we conducted an atomization demonstration of LN devices with different sizes to evaluate particle size and atomization efficiency. Furthermore, to reveal the relationship between vibration behavior and atomization efficiency, resonance vibration in the MHz frequency band was evaluated by the finite element method and an impedance analyzer. The results showed that the peak size of water particles atomized by each device was in the range of 3.2 to 4.2 µm, which is smaller than particles produced by typical piezoelectric ceramics. Moreover, the best LN size for efficient atomization was found to be 8 mm × 10 mm among the five LN device sizes used in experiments. From the relationship between vibration behavior and atomization efficiency, the size of the transducer was suggested to affect the vibration mode. The obtained result suggested that the LN device is suitable for small wearable nebulizer devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.