Abstract

Certain modern applications of high-intensity focused ultrasound (HIFU) in medicine use the nonlinear effect of shock front formation in the focal waveform. However, an important problem remains unsolved: determination of transducer parameters that provide the given pressure levels of the shock wave field at the focus required for a specific application. In this paper, simulations based on the Khokhlov-Zabolotskaya equation are performed to test and confirm the hypothesis that angular aperture of the transducer is the main parameter that determines the characteristic amplitude of the shock front and corresponding values for the peak positive and negative pressures at the focus. A criterion for formation of a developed shock in the acoustic waveform, as well as a method for determining its amplitude is proposed. Quantitative dependences of the amplitude of the developed shock and the peak pressures in the wave profile on the angular aperture of the transducer are calculated. The effects of saturation and the range of changes of the shock waveform parameters at the focus are analyzed for a typical HIFU transducer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.