Abstract

The dependence of aluminum (Al) melting temperature on particle size was studied using a differential scanning calorimeter and thermogravitmetric analyzer for particles encapsulated in an oxide shell. Pressure generation within the Al core leads to an increase in melting temperature in comparison with traditional melting temperature depression calculated using the Gibbs−Thomson equation. On the basis of elasticity theory, the pressure in the Al core at the onset of melting is caused mainly by surface tension at the alumina−air and Al−alumina interfaces. This implies that pressure due to the difference in thermal expansion of aluminum and alumina relaxes. A possible relaxation mechanism is discussed. The static strength of the alumina shell and the maximum static generated pressure in aluminum were evaluated. Mechanically damaging the oxide shell was shown to reduce the melting temperature due to a decrease in generated pressure within the Al core. Thus, reduction in melting temperature can be used as a qu...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call