Abstract
In this work the desulfurization ability of three alkyl-piperidinium-based ionic liquids (PIPILs) from heptane, which is used as a model of gasoline and diesel oils, has been developed. With this aim, ternary (liquid+liquid) phase equilibrium data (LLE) have been obtained for mixtures of {PIPIL (1)+thiophene (2)+heptane (3)} at T=298.15K and ambient pressure and for the best thiophene entrainer {[PMPIP][NTf2] (1)+benzothiophene (2)+heptane (3)} at T=308.15K and ambient pressure. Three PIPILs have been studied: 1-propyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide [PMPIP][NTf2], 1-butyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide [BMPIP][NTf2] and 1-hexyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide, [HMPIP][NTf2]. The suitability of PIPILs used as solvents for extractive desulfurization has been evaluated in terms of solute distribution ratio and selectivity. Immiscibility was observed in the binary liquid systems of (thiophene, or benzothiophene+heptane) with all PIPILs used. One of proposed PIPILs, [PMPIP][NTf2] shows high selectivities and high distribution ratios for extraction of sulfur compounds. The data obtained have been correlated with the non-random two liquid NRTL model. The experimental tie-lines and the phase composition in mole fraction in the ternary systems were calculated with an average root mean square deviation (RMSD) of 0.0037.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.