Abstract

This work investigates the fabrication of Ti6Al4V/xAg composites processed by powder metallurgy. An atomized Ti6Al4V powder was blended with 0, 5, 10, 15 and 20 vol% of Ag particles, compacted in a die, and sintered above Ag melting point. The compressibility of the mixtures was analyzed, and the sintering kinetics was evaluated by dilatometry tests. The characterization of sintered samples by microtomography, SEM and diffraction analysis allowed determining the effect of Ag amount on the sintering process and on microstructural changes arising during sintering. The mechanical properties of sintered materials were investigated by microhardness. The compressibility of Ti6Al4V powder was found to be improved by adding soft Ag particles, which resulted in denser packing and larger plastic deformation. The densification during compaction can be predicted by Heckel model and the rule of mixture. It was next found that sintering was driven by volume diffusion in the solid state for Ag content lower than 10 vol% and involved a liquid phase for Ag content higher than 15 vol%. In the latter case, the liquid fills the interconnected pores under the action of capillary forces as the quantity of liquid increased. The microstructure was composed mainly of α-Ti, Ti2Ag, and Ag, which filled the pores between Ti6Al4V particles. Microhardness data showed a maximum value with 20 vol% of Ag. This value is similar to those reported for highly dense Ti6Al4V. It has thus proved that close to full-dense Ti6Al4V/20Ag composites can be processed by powder metallurgy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.