Abstract

The effect of additional organic carbon sources on the production of nitrous oxide (N2O) in anaerobic-aerobic (low dissolved oxygen) real wastewater treatment system was investigated. In this paper, three laboratory-scale sequencing batch reactors (SBRs) (SBR-1, SBR-2 and SBR-3) were operating under an anaerobic-aerobic (low dissolved oxygen, 0.15–0.45 mg·L−1) configuration. The SBRs were ‘long-term cultured’ respectively with a single municipal wastewater sample, sodium acetate, and a waste-activated sludge alkaline fermentation liquid as the additional carbon sources of real wastewater. Off-gas analysis showed that N2O was emitted into the atmosphere during the aerobic (low dissolved oxygen) period in the three SBRs, and the order of N2O emission rate was SBR-2>SBR-1>SBR-3. It was observed that the higher poly-β-hydroxyvalerate fraction of polyhydroxyalkanoates, the lower glycogen transformation and less nitrite accumulation was in SBR-3, while the opposite behavior was observed in SBR-2. Further research indicated that the interaction of the factors above potentially affected the N2O emission in the anaerobic-aerobic (low dissolved oxygen) system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call