Abstract

The textures and nanomechanical properties of nanocrystalline Fe-50wt%Ni foil fabricated by using an electroforming method were investigated. The as-deposited texture was characterized by major <100>//ND and minor <111>//ND fibre components. Annealing of the as-deposited specimen resulted in the texture change that the <111>//ND fibre texture developed strongly with decreasing <100>//ND intensity. The elastic modulus and hardness were investigated by nanoindentation test, and these experimental results were compared with the theoretical predictions based on an elastic self-consistent (ESC) polycrystal model. Annealing led to an increase in the elastic modulus and a strong decrease in the hardness. At the low ratio of indentation depth to the specimen thickness, the theoretical predictions of the elastic modulus in the sample thickness direction showed a good agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.