Abstract

Line contact and sliding–rolling movements exist widely in gears and bearings. In order to investigate the influence of surface microstructure on the frictional noise, a numerical study on the frictional noise generated by textured surfaces under line contact and sliding–rolling conditions by the use of finite element method is presented. The finite element model is established based on real surface topography. To improve the analysis reliability, friction coefficients used in the simulation are measured for different textured surfaces under various loads and speeds. The relationship between the 3D surface topography parameters and the frictional noise are analyzed. Results show that the frictional noise under line contact sliding–rolling conditions increases with load and speed, which can be explained from an energy dissipation perspective. Moreover, the 3D surface topography parameters of mean peak curvature and peak density influence the frictional noise during sliding–rolling under line contact significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.