Abstract

Effects of texture and loading frequency on the fatigue crack growth behavior of an extruded and a drawn Al alloys of 2017-T4 were investigated under ultrasonic loading frequency (20kHz) in the relative humidity of 25% and 85%, respectively. The extruded alloy has a marked texture of (111) orientation, but this specified orientation is not observed in the drawn alloy. Most of fatigue life was occupied by the growth life of small cracks in the both alloys regardless of humidity. In the low humidity, crack growth was retarded at about 0.3 mm in length in the both alloys. Although crack growth was accelerated by high humidity in the early growth process, there was no or little influence of humidity on the growth rate of cracks over about 0.3 mm in the both alloys. After the retardation of crack growth, fracture surfaces featured with many slip planes in the extruded alloy and many facets in the drawn one, respectively. The difference in growth mechanism between short cracks (<0.3 mm) and longer ones (>0.3 mm) was caused by the environment at crack tips due to high crack growth rate under ultrasonic loading, and that between the both alloys was related to the degree of texture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.