Abstract

The dissolution of cellulose from biomass is a crucial but complicated issue for maximizing the utilization of biomass resources to produce valuable chemicals, because of the extreme insolubility of cellulose. A biphasic NaCl-H2 O-tetrahydrofuran (THF) system was studied, in which most of the pure microcrystalline cellulose (M-cellulose, 96.6 % conversion at 220 °C) and that contained in actual biomass were converted. Nearly half of the O6-H⋅⋅⋅O3 intermolecular hydrogen bonds could be broken by THF in the H2 O-THF co-solvent system, whereas the cleavage of O2-H⋅⋅⋅O6 intramolecular hydrogen bonds by H2 O was significantly inhibited. In the NaCl-H2 O-THF system, THF could significantly promote the effects of both H2 O and NaCl on the disruption of O2-H⋅⋅⋅O6 and O3-H⋅⋅⋅O5 intramolecular hydrogen bonds, respectively. In addition, THF could protect and transfer the cellulose-derived products to the organic phase by forming hydrogen bonds between the oxygen atom in THF and the hydrogen atom of C4-OH in the glucose or aldehyde group in 5-hydroxymethylfurfural (HMF), which can lead more NaCl to combine with the -OH of M-cellulose and further disrupt hydrogen bonding in M-cellulose, thereby improving the yield of small molecular weight products (especially HMF) and further promoting the dissolution of cellulose. As a cheap and reusable system, NaCl-H2 O-THF system may be a promising approach for the dissolution and further conversion of cellulose in lignocellulosic biomass without any enzymes, ionic liquids, or conventional catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call