Abstract

Accumulation of the permeant lipophilic cation [(3)H]tetraphenylphosphonium (TPP(+)) by synaptosome preparations from guinea pig brain cerebral cortex is inhibited 1:10 by medium containing 193 mM K(+) and by veratridine. A further 1:10 to 1:15 decrease in TPP(+) uptake occurs under nitrogen and in the presence of mitochondrial inhibitors such as oligomycin, whereas starvation and succinate supplementation have no effect. These data indicate that, in analogy to intact neurons, there is an electrical potential (DeltaPsi, interior negative) of -60 to -80 mV across the synaptosomal membrane that is due primarily to a K(+) diffusion gradient (K(+) (in)-->K(+) (out)). The data also indicate that mitochondria entrapped within the synaptosome but not free mitochondria make a large contribution to the TPP(+) concentration gradients observed. Conditions are defined in which tetanus toxin binds specifically and immediately to synaptosomes in media used to measure TPP(+) uptake. Under these conditions tetanus toxin induces dose-dependent changes in TPP(+) uptake that are blocked by antitoxin and not mimicked by biologically inactivated toxin preparations. The effect of tetanus toxin on TPP(+) uptake is not evident in the presence of 193 mM K(+) or veratridine but remains under conditions known to abolish the mitochondrial DeltaPsi. Moreover, tetanus toxin has no effect on TPP(+) uptake by isolated synaptosomal mitochondria. The results thus define an in vitro action of tetanus toxin on the synaptosomal membrane that can be correlated with biological potency in vivo and is consistent with the in vivo effects of tetanus toxin on neuronal transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.