Abstract

Testosterone is known to act differentially on skeletal muscle from different regions. Two genes likely to mediate the testosterone effect are IGF-I, an important growth regulator acting in an autocrine and paracrine way, and androgen receptor (AR), as receptor density could account for differential muscle growth. Another muscle-specific gene that may play a role in differential muscle growth is myostatin, a member of the transforming growth factor-beta superfamily, shown to be a negative regulator of skeletal muscle mass. The objective of this study was to quantify and compare the expression of these three genes in two different skeletal muscles in sheep. East Friesian x Dorset-sired ram lambs from Dorset ewes were used in a 2 x 4 factorial experiment. Eighteen sets of twins were assigned to four age groups corresponding to 77, 105, 133, and 161 d of age, and one individual from each set was castrated at birth. Total RNA was extracted from samples of splenius (SP) and semitendinosus muscles collected at the time of slaughter. Insulin-like growth factor-I mRNA was measured using competitive reverse-transcription PCR. Androgen receptor and myostatin mRNA were measured by ribonuclease protection assay with standard curves. Weight of SP was greater than semitendinosus in rams compared with wethers at 105, 133, and 161 d (P = 0.05, P = 0.04, and P = 0.02, respectively). The difference in IGF-I mRNA levels between the two muscles was greater in rams than in wethers at 133 (P = 0.001) and 161 d (P = 0.014), and the difference in AR mRNA levels was greater in rams than in wethers at 105, 133, and 161 d (P = 0.002, P < 0.001, and P < 0.001, respectively), with greater abundance in the SP. No difference was found in myostatin mRNA level between the two muscles in rams and wethers at any age. These results suggest that locally produced IGF-I and the regulation of AR expression are important for sexually dimorphic muscle growth patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.