Abstract

Micro-abrasion wear test is a widely used method in measurement of abrasive wear resistance of thin hard coatings. During the test, selection of test parameters has great importance in determination of the wear behavior of the material under investigation correctly. Therefore, in this study, the effect of test parameters on the micro-abrasion behavior of CrN coating was investigated by the fixed-ball micro-scale abrasion test and modeled by response surface methodology. The coating was deposited on AISI D2 cold work tool steel using industrial cathodic arc evaporation system. The wear tests have been performed using SiC abrasive slurry. Analysis of worn craters was conducted by scanning electron microscope (SEM). It was found that the models obtained from ANOVA tables for wear volume and wear rate of CrN coating are significant and have high correlation coefficients. The rotation speed has higher influence on the wear volume of CrN coating, whereas the normal load has higher influence on the wear rate. The higher normal load increases the wear volume and decreases the wear rate. The effect of rotation speed changes according to the value of applied speed. Grooves take place by two-body abrasion in all of the craters obtained at different rotation speed and normal load values. Depth of parallel grooves in CrN coating and AISI D2 substrate decreases with the normal load and with the rotation speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call