Abstract

The effects of substituting Cu for either Ti or Al in Al3Ti were studied by the first-principles local density self-consistent linear muffin tin orbital method. The Cu atoms are found to strongly favor Al sites and to promote the stability of the L12 phase, in agreement with experiment. Surprisingly, the rigid band model is closely followed when Cu substitutes for Al. However, the structure of the density of states undergoes remarkable changes if Cu substitutes for Ti; a much weaker hybridization occurs in both L12- and DO22-like structures, giving rise to weaker binding effects. The modification of bond directionality upon Cu addition is determined by comparing the charge density for the structures calculated with those of pure Al3Ti. The effect of tetragonal distortion is also examined. By comparing with the bonding characteristics of pure Al3Ti in the L12 and DO22 structures, the addition of Cu to Al3Ti is found to be equivalent to the tetragonal distortion in DO22 Al3Ti as far as bonding is concerned, resulting in the stabilized L12-like structure for (AlCu)3Ti. The semi-empirical inverse relation between the structural stability and the density of states at Fermi energy is well established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call