Abstract

Homologous recombination of linear DNA molecules in Xenopus laevis oocytes is very efficient. The predictions of molecular models for this recombination process were tested with substrates with terminal nonhomologies (nonhomologous sequences). It was found that nonhomologies on one or both ends of an otherwise efficient substrate substantially reduced the yield of recombination products. In the case of a single nonhomology, inhibition was observed for all lengths of nonhomology, from 60 to 1,690 bp, being most dramatic for the longer blocks. Examination of time courses of recombination showed that the blocks were largely kinetic; that is, substrates with short nonhomologies eventually yielded substantial levels of completed products. Intermediates that accumulated after the injection of end-blocked substrates were characterized by two-dimensional gel electrophoresis and hybridization with strand-specific oligonucleotide probes. These blocked intermediates were shown to have base-paired junctions, but resolution was prevented by the failure to remove the 3'-ending strand of the original nonhomology. Continuing exonuclease action created a single-strand gap adjacent to the position of the persistent nonhomology. In contrast, the strand that included the unblocked side of the junction could be sealed. These results are consistent with a nonconservative, resection-annealing mechanism of homologous recombination in the oocytes and suggest the absence of any activity that can efficiently remove 3' tails.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.