Abstract

The effect of stress on the cathodic hydrogen evolution behavior of X70 pipeline steel was investigated by electrochemical tests, tensile tests, and microstructural characterization. The results indicated that the tensile stress enhanced the activity of hydrogen adsorption sites on the metal surface, which was considered as the dominating factor affecting generation, adsorption, and permeation of hydrogen atoms. The subsurface hydrogen atom concentrations quantified by Cyclic voltammetry (CV) tests and the data calculated by hydrogen permeation experiments showed a good correspondence. The results indicated that the tensile stress enhanced the adsorption of hydrogen atoms on the surface and an inhibitory effect on the Tafel and Heyrovsky reaction, thereby leading to the increase of the subsurface hydrogen atom concentration, enhance the hydrogen embrittlement susceptibility of the X70 steel material as demonstrated by plasticity loss in the tensile tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.