Abstract

Taking the change of L-point conduction band valley degeneracy under strain into consideration, we investigate the effect of biaxially tensile strain (parallel to the (001), (110), and (111) planes) and uniaxially tensile strain (along the [001], [110], and [111] directions) on the electronic structure of Ge using density functional theory calculations. Our calculation shows that biaxial tension parallel to (001) is the most efficient way to transform Ge into a direct bandgap material among all tensile strains considered. [111]-tension is the best choice among all uniaxial approaches for an indirect- to direct-bandgap transition of Ge. The calculation results, which are further elaborated by bond-orbital approximation, provide a useful guidance on the optical applications of Ge through strain engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.