Abstract

To elucidate the deformation behavior of rubber blended semi-crystalline polymers, the micro- to mesoscopic structure and its mechanical behavior was modeled by using large-deformation finite element homogenization method. In this paper, the effect of direction and strain rate of tensile loading, volume fraction of rubber particle and distance between rubber particles was investigated by numerical simulations of uniaxial tension of semi-crystalline polymer with uniformly distributed rubber particles. A series of computational result clarified the followings. The stress in earlier stage of the deformation, where the stress increases linearly with the strain, is high when the volume fraction of rubber particles is small, when distance between rubber particles is small, and when the load is applied parallel to the nearest neighbor direction. That in following stage, where the stress increases non-linearly with the strain, is high when the volume fraction of rubber particles is small and when tensile strain rate is high. Furthermore, change in the local strain rate and mean stress distribution with the increase in the global tensile strain rate is closely related to the distance between rubber particles and tensile direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call