Abstract

The sapphire crystal, the most commonly used LED substrate material, has excellent optical and chemical properties and has rapidly developed in recent years. However, the challenge of growing large-size sapphire crystals remains. This paper presents a novel approach using alumina nanoparticles synthesized with abietic acid as a template to enhance sapphire growth via the heat exchange method. This study explores the effects of temperature, time, and template amount on the structure and morphology of the synthesized alumina nanoparticles. The results show that the morphology of the raw material, particularly spherical alumina nanoparticles, positively affects the quality and yield stability of sapphire products. Furthermore, the light output power of GaN-based LED chips made with the experimentally fabricated sapphire substrate increased from 3.47 W/µm2 to 3.71 W/µm2, a 6.9% increase compared to commercially available sapphire substrates. This research highlights the potential of using abietic acid as a template for alumina nanoparticle synthesis and their application in sapphire growth for LED production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.