Abstract

The effects of various thermal treatments,i.e., oil quench and different tempering conditions, on quasi-static and impact fracture toughness, stress-strain characteristics, hardness, and Charpy energy of 5140 H steel were examined. During quasi-static and impact loading notched round tensile specimens were used with a prefatigued crack. A specially designed device together with a pendulum hammer and electronic measuring system was used enabling testing of the opening mode fracture toughness at loading rates up to K1= 3 x 106 MPa√m per second. It has been found that within the region of the lower tempering temperatures, 500 K≤ 650 K, the critical stress intensity factor KIc determined from impact testing is lower than that obtained during slow loading, whereas at the higher tempering temperatures, 650 K ≤T* ≤ 900 K, dynamic KIu values show a tendency to be higher than their quasi-static counterparts. This behavior was analyzed quantitatively using the Hahn-Rosenfield model which relates tensile properties to fracture toughness. A good agreement was found between quasi-static experimental results and the model. The relation between Charpy energy Kv and the critical stress intensity factor KIc was also evaluated. Changes of the fracture toughness are discussed within the framework of SEM fractographs taken after quasi-static and impact tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call