Abstract
Transient gene expression in whole plants by using viral vectors is promising as a rapid, mass production system for biopharmaceutical proteins. Recent studies have indicated that plant growth conditions such as air temperature markedly influence the accumulation levels of target proteins. Here, we investigated time course of the amount of recombinant hemagglutinin (HA), a vaccine antigen of influenza virus, in leaves of Nicotiana benthamiana plants grown at 20°C or 25°C post viral vector inoculation. The HA content per unit of leaf biomass increased and decreased from 4 to 6 days post inoculation at 20°C and 25°C, respectively, irrespective of the subcellular localization of HA. The overall HA contents were higher when HA was targeted to the endoplasmic reticulum (ER) rather than the apoplast. Necrosis of leaf tissues was specifically observed in plants inoculated with the ER-targeting vector and grown at 25°C. With the ER-targeting vector, the maximum HA contents at 20°C and 25°C were recorded at 6 and 4 days post inoculation, respectively, and were comparable to each other. HA contents thereafter decreased at both temperatures; the rate of reduction appeared faster at 25°C than at 20°C. From a practical point of view, our results indicate that the strategy of targeting HA to the ER, growing plants at a lower temperature of 20°C, and harvesting leaves at around a week after vector inoculation should be implemented to obtain a high HA yield stably and efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.