Abstract

The aim of this investigation is to evaluate the concurrent influence of temperature (4–50°C), pH (3.5–7.0), and the presence of nisin (up to 200μg/mL) on the inactivation of two PEF-resistant Gram-negative, pathogenic bacteria, Salmonella Typhimurium STCC 878 and Escherichia coli O157:H7, using a PEF treatment of 30kV/cm and 99μs. A response surface model using a central composite design was developed for the purpose of understanding the individual effects and interactions of these factors.The models showed that temperature was the factor with the greatest influence on the PEF inactivation in the two strains investigated. Increasing the treatment temperature from 4 to 50°C increased the lethality of PEF up to at least 4 Log10 reductions for both microorganisms at all pH levels investigated. PEF lethality varied with the square of the pH observing the highest microbial PEF sensitivity at pH 5.25 at all temperatures. The addition of nisin to the treatment medium did not influence the PEF lethality independently of the temperature.PEF induced 1.0–1.5 Log10 cycles of damaged cells at pH 3.5 for Salmonella Typhimurium STCC 878 and at pH 5.25 for E. coli O157:H7, independently of the temperature or the presence of nisin in the treatment medium.The application of PEF at 50°C permitted the achievement of 5 Log10 reductions of Salmonella Typhimurium STCC 878 and E. coli O157:H7 in a range of pH from 4.2 to 6.7 and from 4.5 to 6.0, respectively. Therefore, the application of PEF at moderate temperatures has great potential for achieving effective control of Gram-negative pathogenic microorganisms in the range of pH found in most foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.