Abstract

Multi-layer graphene nanoribbons (MLGNR) have been proposed as a possible interconnect material. Based on an equivalent single-conductor model of an intercalation-doped MLGNR (ID-MLGNR) interconnect, along with mixed carbon-nanotube bundle (MCB) interconnects, a comparative temperature-dependent study is performed with regard to their distributed circuit parameters and signal transmission performance in terms of delay, power dissipation, and power–delay product (PDP) at the global domain of interconnects. A similar analysis is carried out for copper (Cu) interconnects, and the results are compared with ID-MLGNR and MCB interconnects at the 14-nm technology node. Four different structures of MCB (MCBs 1–4), with and without tunneling effects, are considered here. The SPICE simulation results reveal that for 1-mm-long interconnects, stage-2 AsF5 ID-MLGNR with nearly specular edges have lower delay, power dissipation, and PDP in comparison to MCBs (1–4) with tunneling effects and conventional Cu interconnects over a temperature range of 300 to 500 K. With regard to propagation delay and power dissipation, it has also been shown that MCB interconnects with non-consideration of tunneling effects outperform MCB interconnects with tunneling effects. Additionally, among the MCB (1–4) structures, MCB-1 consistently has lower delay within a temperature range from 300 to 500 K. Moreover, an average improvement in relative delay of 23.78% and 37.66% is observed for ID-MLGNR interconnects in comparison with the best delay structure of MCBs, i.e. MCB-1, and Cu interconnects, respectively, over a temperature range of 300 to 500 K. It is proposed that, in the context of reduced propagation delay, power dissipation, and PDP, ID-MLGNR interconnects hold greater promise than MCB and Cu interconnects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call