Abstract

High-temperature performance is a key factor to concern for the application of cast Al–Si alloys. The evolution of microstructures and mechanical properties of a multiphase Al–Si–Cu–Mg–Ni–Ce alloy during tension in a temperature range from 25 °C (ambient temperature) to 425 °C was investigated. The results show that the main strengthening precipitates of the alloy are θ′ and Q phases. They are stable at 25–250 °C, while dissolve rapidly above 250 °C during tension. The damage initiates and propagates in the form of cracking of brittle phases. The fracture mechanism transforms from quasi-cleavage to coexistence of quasi-cleavage and dimple as temperature increases. The Ce-bearing phase Al20Ti2Ce promotes the damage occurrence below 350 °C while hinders crack propagation at 425 °C. The ultimate tensile strength (UTS) and yield strength (YS) decrease as the tensile temperature increases. The decreasing rate of UTS can be divided into three stages which is associated with the decreasing rate of strengthening precipitates. An empirical constitutive equation is proposed to describe the relationship between UTS and tensile temperature. It provides a good estimation for both cast and wrought Al alloys and the predicted strengths are in good agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.