Abstract

ABSTRACTTemperature is a very important factor that must be fully considered in the study on the adhesive joint strength. In this paper, a silyl-modified polymer-based adhesive ISR 70-08 which is widely used in engineering was studied. Dog-bone specimens were fabricated and tested at −40°C, room temperature (RT), and 90°C. Results show a decrease in the main mechanical properties with increasing temperature. Butt joints (BJs), single-lap joints (SLJs), and Scarf joints (SJs) were fabricated and tested at different temperatures. A quadratic polynomial expression was an ideal choice to express the joint strength as a function of temperature which was obtained using the least-squares method. Temperature combinations of −40°C, 0°C, and 90°C were obtained to study the effect of temperature on the joint strength more easily for this adhesive. A three-dimensional surface, consisting of temperature, adhesive angle, and joint strength was presented to facilitate the application of bonding structures in engineering

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.