Abstract

Abstract Fracture toughness was measured for a range of rock materials as a function of temperature between ambient temperature and 150°C. Measurements were made along all three principal crack orientations for the transversely isotropic Mancos shale and in single orientations for the more isotropic Darley Dale sandstone, Indiana limestone and Lanhelin granite. Fracture toughness was measured using a modified short-rod method with the sample and loading equipment enclosed within an elevated temperature chamber. A slight increase in K Ic was observed in Lanhelin granite with increasing temperatures up to 54°C, before a steady decrease at higher temperatures. For the sandstone and limestone, little change was observed in K Ic over the studied temperature range. In measurements on Mancos shale at elevated temperatures. Fracture toughness was seen to increase slightly with increasing temperature in the arrester orientation over this range, while remaining constant in the other two orientations. These observations can be explained in terms of the development of thermally induced microfractures parallel to the bedding planes in this material. A bimodal distribution of K Ic values in the short-transverse orientation was not observed, as it has been for previously published measurements at ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.