Abstract
The working mechanism of conventional light-driven molecular rotary motors, especially Feringa-type motors, contains two photoisomerization steps and two thermal helix inversion steps. Due to the existence of a thermal helix inversion step, both the ability to work at lower temperatures and the rotation speed are limited. In this work, a two-stroke light-driven molecular rotary motor, 2-(1,5-dimethyl-4,5-dihydrocyclopenta[b]pyrrol-6(1H)-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDPY), is proposed, which is capable of performing unidirectional and repetitive rotation by only two photoisomerization (EP→ZP and ZP→EP) steps. With trajectory surface-hopping simulation at the semi-empirical OM2/MRCI level, the EP→ZP and ZP→EP nonadiabatic dynamics of DDPY were systematically studied at different temperatures. Both EP→ZP and ZP→EP photoisomerizations are on an ultrafast timescale (ca. 200–300 fs). The decay mode of EP→ZP photoisomerization is approximately bi-exponential, while that of ZP→EP photoisomerization is found to be periodic. For EP and ZP isomers of DDPY, after the S→S excitation, the dynamical processes of nonadiabatic decay are both followed by twisting about the central C=C double bond and the pyramidalization of the C atom at the stator-axle linkage. The effect of temperature on the nonadiabatic dynamics of EP→ZP and ZP→EP photoisomerizations of DDPY has been systematically investigated. The average lifetimes of the S excited state and quantum yields for both EP→ZP and ZP→EP photoisomerization are almost temperature-independent, while the corresponding unidirectionality of rotation is significantly increased (e.g., 74% for EP→ZP and 72% for ZP→EP at 300 K vs 100% for EP→ZP and 94% for ZP→EP at 50 K) with lowering the temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.