Abstract

The sorption behavior of 3.18×10−6 mol l−1 solution of Tm(III) metal ions onto 7.25 mg l−1 of 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated at different temperatures i.e. 303 K, 313 K, and 323 K. The maximum equilibration time of sorption was 30 minutes from pH 7.5 buffer solution at all temperatures. The various rate parameters of adsorption process have been investigated. The diffusional activation energy (ΔEads) and activation entropy (ΔSads) of the system were found to be 22.1±2.6 kJ mol−1 and 52.7±6.2 J mol−1 K−1, respectively. The thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) were calculated and interpreted. The positive value of ΔH and negative value of ΔG indicate that sorption is endothermic and spontaneous in nature, respectively. The adsorption isotherms such as Freundlich, Langmuir, and Dubinin–Radushkevich isotherm were tested experimentally at different temperatures. The changes in adsorption isotherm constants were discussed. The binding energy constant (b) of Langmuir isotherm increases with temperature. The differential heat of adsorption (ΔHdiff), entropy of adsorption (ΔSdiff) and adsorption free energy (ΔGads) at 313 K were determined and found to be 38±2 kJ mol−1, 249±3 J mol−1 K−1 and –40.1±1.1 kJ mol−1, respectively. The stability of sorbed complex and mechanism involved in adsorption process has been discussed using different thermodynamic parameters and sorption free energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.