Abstract
Mechanical components in tribological systems exposed to elevated temperatures are gaining increased attention since more and more systems are designed to operate under extreme conditions. In hot metal forming, the effect of temperature on friction and wear is especially important since it is directly related to process economy (tool wear) and quality of the produced parts (friction between tool and workpiece). This study is therefore focused on fundamental understanding pertaining to the tribological characteristics of prehardened hot work tool steel during sliding against 22MnB5 boron steel. The tribological tests were carried out using a high temperature reciprocating sliding friction and wear tester under a normal load of 31 N (corresponding to a contact pressure of 10 MPa), a sliding speed of 0·2 m s−1 and temperatures ranging from 40°C to 800°C. It was found that friction coefficient and specific wear rate decreased at elevated temperature because of formation of compacted wear debris layers on the surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.