Abstract

Foam can increase sweep efficiency within a porous medium, which is useful for oil-recovery processes[1]. The flow of foam in porous media is a complex process that depends on properties like permeability, porosity and surface chemistry, but also temperature. Although the surface activity of surfactants as a function of temperature is well described at the liquid/liquid or liquid/ gas interface, data on the effect of temperature on foam stability is limited, especially in porous media. In this work, we tested a surfactant (AOS) at different temperatures, from 20°C to 80°C, in a sandstone porous medium with co-injection of foam. The pressure gradient, or equivalently the apparent viscosity, was measured in steady-state experiments. The core-flood experiments showed that the apparent viscosity of the foam decreased by 50% when the temperature increased to 80°C. This effect correlates with the lower surface tension at higher temperatures. These results are compared to bulk foam experiments, which show that at elevated temperatures foam decays and coalesces faster. This effect, however, can be attributed to the faster drainage at high temperature, as a response to the reduction in liquid viscosity, and greater film permeability leading to faster coarsening. Our results using the STARS foam model show that one cannot fit foam-model parameters to data at one temperature and apply the model at other temperatures, even if one accounts for the change in fluid properties (surface tension and liquid viscosity) with temperature. Experiments show an increase in gas mobility in the low-quality foam regime with increasing temperature that is inversely proportional to the decrease in gas-water surface tension. In the high-quality regime, results suggest that the water saturation at which foam collapses fmdry increases and Pc * decreases with increasing temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.