Abstract

AbstractDynamic viscoelastic properties of poly(vinyl chloride) (PVC)/bis(2‐ethylhexyl) phthalate (DOP) and PVC/di‐n‐butyl sebacate (DBS) gels with molecular weight distribution (Mw/Mn), of 2.16 and various polymer concentrations c, have been studied as a function of temperature. These PVC gels exhibited an elastic solid at room temperature T, and gradually became liquid (sol) with increasing temperature. The sol‐gel transition took place at a critical gel temperature at which the scaling law of G′(ω) ∼ G″(ω) ∝ ωn held, allowing an accurate determination of the critical gel temperature by means of the frequency ω independence of the loss tangent. In this study the scaling exponent n, was 0.75–0.77. This is in good agreement with the previous results observed at different temperatures and suggests the formation of a similar fractal structure of the PVC gels. The gel strength Sg, at the gel point increased with increasing PVC concentration. These results suggest a unique character and structure for the gel points of PVC‐plasticizers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call