Abstract

Multifactorial experiments were performed to study the diurnal dynamics of CO2 exchange in intact cucumber plants (Cucumis sativus L.). Based on experimental data, we analyzed the models of net photosynthesis, night respiration, and biomass accumulation. This analysis allowed us to resolve the growth component of respiration and to determine the diurnal temperature pattern that is optimal for biomass accumulation. It was found that the most profound transformation of assimilates into the biomass occurs under the maximum ratio of growth respiration to maintenance respiration. Under the experimental conditions used, this requirement was fulfilled at a temperature of 25°C during the photoperiod (optimum of net photosynthesis) and at subsequent gradual cooling to a hardening temperature (13°C by the end of the night).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.