Abstract
In analysis of the temperature effect on chromatographic separations the influence of the adsorption of organic solvent on the retention properties of solute is generally not taken into account. In fact, adsorption behavior of solutes is strongly affected by competitive adsorption of organic solvents, which is temperature dependent. In this work changes of adsorption equilibrium of an organic solvent as well as a solute with temperature have been analyzed. Data of the excess adsorption of methanol from aqueous solutions on octadecyl-bonded silica have been acquired at different temperature. Experiments have been performed over a relatively narrow temperature range corresponding to typical chromatographic conditions, i.e., 10–50 °C. The competitive adsorption equilibria of model solutes (i.e., two homologous compounds: cyclopentanone and cyclohexanone) have been measured at different temperature and composition of the mobile phase. Temperature alterations to the retention properties were found to result from combined effects of changes in adsorption behavior of the organic solvent and of the solute. The influence of temperature on the separation selectivity has been considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.