Abstract

The electrostatic precipitator (ESP) technique is a promising method for enhancing the particulate matter (PM) emission reduction efficiency of diesel engines, and is much better than the diesel particulate filter (DPF) technique. However, the ESP's low efficiency in collecting PM with diameters less than several tens of nanometers remains a problem because the particle charging efficiency decreases as the size of the nanoparticles decreases. To improve the collection efficiency of nanosized PM, we used a photoelectric charger to increase the charging efficiency of nanoparticles ahead of the ESP system. Carbon nanoparticles produced using a spark discharge generator were used to evaluate the collection efficiency of the combined photoelectric charger and ESP system. The particle sizes were measured using a scanning mobility particle sizer system at various experimental temperatures similar to the temperature of DPF systems commonly used in diesel engines. We succeeded in obtaining improved collection efficiencies at increased inner temperatures of the photoelectric charging chamber. As the temperature increased from 694 °C to 839 °C at the inlet of the photoelectric chamber, the efficiency of PM collection improved significantly to 28.5% for a particle diameter of 18.4 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call