Abstract

ABSTRACT The diffusion characteristics of high density polyethylene (HDPE) geomembranes with respect to hydrocarbons are investigated at temperatures of 22±1°C and 6±1°C. Results are reported for an aqueous solution of benzene, toluene, ethylbenzene, and xylene (BTEX). The partitioning coefficient obtained from sorption/immersion test is shown to be effectively the same as that from desorption test. Both conventional untreated (HDPE) and fluorinated (f-HDPE) geomembranes are examined and it is shown that a fluorinated layer on the surface of an HDPE geomembrane increases its resistance to the permeation of BTEX penetrants by about a factor of 2.4 at 22°C and 1.8 at 6°C. An Arrhenius relationship is developed that could be used for estimating hydrocarbon permeation at different temperatures between 6°C and 22°C for both the HDPE and f-HDPE geomembranes examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call