Abstract

Abstract As a part of a comprehensive study to evaluate the effects of elevated curing temperatures on hardened concrete properties, four non-air-entrained high-strength concrete (HSC) mixtures were prepared at temperatures ranging from 10 to 35°C. After mixing, 5.5 liters of concrete were placed inside a large polystyrene block to simulate temperature development in HSC structural members. The concrete temperature inside the block was continuously monitored with thermocouples, and collected temperature information was used to simultaneously temperature-match-cure (TMC) a series of compressive strength, scaling, and freeze-thaw specimens. The maximum recorded temperatures ranged from 59 to 69°C, depending on the fresh concrete temperature. Control specimens from each of the four mixtures were cured at room temperature. Based on the amount of residue collected during scaling tests in the presence of 3% NaCl solution, the TMC specimens were 7–63 times less resistant than the control specimens. However, during the freezing and thawing tests, seven of the eight TMC specimens outperformed their respective control specimens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.